Acetone peroxide is an explosive organic peroxide with a vast, well earned reputation for maiming, terrorism, and 'kewlism'. 

Because of this, it is probably Sciencemadness's least favourite non-drug chemical, and posts involving this are usually ignored or ridiculed.

Acetone peroxide exists most commonly in the cyclic trimer form, which is the most common. Dimer and monomer forms also exist, as well as a more stable tetrameric form.


Chemical Chemistry with acetone peroxide is not done due to its low solubility and explosive properties. 

Acetone peroxide burns very fast if unconfined (it still detonates even when unconfined in gram amounts however) with an orange flame, producing no smoke or ash. The explosion of TATP is primarily driven by entropy and generates relatively little heat.


Acetone peroxide exists as a monomer, a dimer and a trimer. All of these are white, mostly insoluble solids. 

TATP explodes very easily, often too easily. It is static, friction, shock and heat sensitive and can easily detonate unconfined.

Like most explosives, TATP is a lot more sensitive dry than wet. However, more so than other primary explosives, TATP sublimes very quickly, depositing large unstable crystals on inconvenient places which can detonate without warning.


TATP is not avaliable anywhere as it does not store at all well. 

Organic peroxides have been used in numerous terrorism incidents, so producing or storing large amounts of this chemical is seen as intent to carry out such an act.


TATP is made by people who either don't know any better, or know exactly what they're doing. Because you're on this site, you know better, so don't make it. If your facilities only allow you to make this explosive, you shouldn't be making explosives. If you cannot figure out how to do this simple synthesis yourself, chances are you are not experienced enough to make it.

TATP is unpredictable.  Detonations from static shock, bumping a container or even with no apparent reason at all have been reported. 

If the synthesis is undertaken, the solution must be kept as cold as possible to limit the formation of the monomer and dimer which are even more chemically unstable (which is really, really saying something) than the trimer form. 


As of yet, there is no riskless synthesis of acetone peroxide, and it is unlikely there will ever be one. Any single error or deviation from ideal conditions (which aren't even known entirely) in the synthesis can make the product formed drastically more sensitive and unpredictable, and this is often the case. A huge danger in the storage of acetone peroxide is from its ability to sublime. In a container, the solid will sublime forming very unstable crystals on the lid and walls. This can easily lead to an explosion the next time the container is open, obviously with dire consequences. Another issue in the production of TATP is the production of the monomeric or dimeric forms, which are even less stable and can trigger detonation of an entire sample.

As it is formed from common lab chemicals, care should be taken to avoid forming this substance accidentally from discarded chemicals. Organic molecules should always be kept away from even mildly concentrated solutions of hydrogen peroxide until thorough research on possible reactions has been conducted, as there are many, many other highly dangerous peroxides. 


It is a federal offense to make, possess, or use TATP in the United States.

See alsoEdit

References Edit

Relevant Sciencemadness threadsEdit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.